рефераты бесплатно
Главная

Рефераты по геополитике

Рефераты по государству и праву

Рефераты по гражданскому праву и процессу

Рефераты по делопроизводству

Рефераты по кредитованию

Рефераты по естествознанию

Рефераты по истории техники

Рефераты по журналистике

Рефераты по зоологии

Рефераты по инвестициям

Рефераты по информатике

Исторические личности

Рефераты по кибернетике

Рефераты по коммуникации и связи

Рефераты по косметологии

Рефераты по криминалистике

Рефераты по криминологии

Рефераты по науке и технике

Рефераты по кулинарии

Рефераты по культурологии

Рефераты по зарубежной литературе

Рефераты по логике

Рефераты по логистике

Рефераты по маркетингу

Рефераты по международному публичному праву

Рефераты по международному частному праву

Рефераты по международным отношениям

Рефераты по культуре и искусству

Рефераты по менеджменту

Рефераты по металлургии

Рефераты по муниципальному праву

Рефераты по налогообложению

Рефераты по оккультизму и уфологии

Рефераты по педагогике

Рефераты по политологии

Рефераты по праву

Биографии

Рефераты по предпринимательству

Рефераты по психологии

Рефераты по радиоэлектронике

Рефераты по риторике

Рефераты по социологии

Рефераты по статистике

Рефераты по страхованию

Рефераты по строительству

Рефераты по схемотехнике

Рефераты по таможенной системе

Сочинения по литературе и русскому языку

Рефераты по теории государства и права

Рефераты по теории организации

Рефераты по теплотехнике

Рефераты по технологии

Рефераты по товароведению

Рефераты по транспорту

Рефераты по трудовому праву

Рефераты по туризму

Рефераты по уголовному праву и процессу

Рефераты по управлению

Реферат: Полосно-пропускающий фильтр

Реферат: Полосно-пропускающий фильтр

представляет собой устройство, которое пропускает сигналы в диапазоне частот с шириной полосы BW, расположенной приблизительно вокруг центральной частоты ω0 (рад/с), или f0=ω0/2π (Гц). На рисунке 1 изображены идеальная и реальная амплитудно-частотные характеристики. В реальной характеристике частоты ωL и ωU представляют собой нижнюю и верхнюю частоты среза и определяют полосу пропускания ωL≤ω≤ωU и её ширину BW= ωU-ωL.

В полосе пропускания амплитудно-частотная характеристика никогда не превышает некоторого определённого значения, например А на рисунке 1. Существует также две полосы задерживания 0≤ω≤ω1 и ω2≤ω, где значение амплитудно-частотной характеристики никогда не превышает заранее выбранного значения, скажем, А2. Диапазоны частот между полосами задерживания и полосой пропускания, а именно ωL<ω<ωU и ωL<ω<ωU, образуют соответствено нижнюю и верхнюю переходные области, в которых характеристика является монотонной.

Отношение Q=ω0/BW характеризует качество самого фильтра и является мерой его избирательности. Высокому значению Q соответствует относительно узкая, а низкому значению Q – относительно широкая полосы пропускания. Коэффициент усиления фильтра K определяется как значение его амплитудно-частотной характеристики на центральной частоте; таким образом, .

Передаточные функции полосно-пропускающих фильтров можно получить из нормированных функций нижних частот переменной S с помощью преобразования

.

Таким образом, порядок полосно-пропускающего фильтра в 2 раза выше, чем порядок соответствующего ему фильтра нижних частот и, следовательно всегда является чётным.

Схема с многопетлевой обратной связью (МОС) и бесконечным коэффициентом усиления, изображённая на рисунке 3 представляет собой один из наиболее простых полосно-пропускающих фильтров второго порядка. Она реализует функцию полосно-пропускающего фильтра при инвертирующем коэффициенте усиления.

Полосно-пропускающий фильтр с МОС, подобно его аналогам нижних и верхних частот, обладает минимальным числом элементов, инвертирующим коэффициентом усиления и способностью обеспечивать значение добротности Q≤10 при небольших коэффициентах усиления.


Рисунок 1. Схема полосно-пропускающего фильтра с МОС

Схема на ИНУН, изображённая на рисунке 4 реализует функцию полосно-пропускающего фильтра второго порядка.

Этот полосно-пропускающий фильтр на ИНУН обеспечивает неинвертирующий коэффициент усиления и может реализовать значения добротности Q≤10.


Рисунок 2. Схема полосно-пропускающего фильтра на ИНУН

На рисунке 5 изображена биквадратная схема, которая реализует передаточную функцию полосно-пропускающего фильтра второго порядка.

Биквадратная схема требует бόльшего числа элементов, чем схема с МОС и на ИНУН, однако из-за её стабильности и прекрасных возможностях по настройке она очень популярна. На ней можно реализовать значения добротности вплоть до 100.

 
 


Настройка полосно-пропускающего звена второго порядка осуществляется наиболее просто, если имеется возможность наблюдать общий вид его амплитудно-частотной характеристики. Частоты f1 и f2 представляют собой точки по уровню 3 дБ.

РАСЧЁТ.

Для расчёта полосно-пропускающего фильтра второго порядка, соответствующего звену нижних частот второго порядка, обладающий заданной

Рисунок 3. Схема биквадратного полосно-пропускающего фильтра

центральной частотой f0 (Гц), или ω0=2πf0 (рад/с), коэффициентом усиления звена K и добротностью Q, необходимо выполнить следующие шаги.

1.      Выбрать номинальное значение ёмкости C1 (предпочтительно близкое к значению 10/f0 мкФ) и номинальное значение ёмкости C2 (желательно равное C1).

2.      Вычислить сопротивления:

где ρ=K/Q; β=1/Q.

3.      Выбрать номинальные значения сопротивлений, наиболее близкие к вычисленным значениям, и реализовать фильтр в соответствии со схемой рисунок 3.


КОММЕНТАРИИ

·        Для обеспечения лучших рабочих характеристик номинальные значения элементов должны выбираться наиболее близкими к выбранным и вычисленным значениям. Рабочая характеристика не изменится, если значения всех сопротивлений умножить, а ёмкостей поделить на общий множитель.

·        Входное полное сопротивление ОУ должно быть по крайней мере 10R3. Коэффициент усиления ОУ с разомкнутой обратной связью должен по крайней мере в 50 раз превышать значение амплитудно-частотной характеристики фильтра на частоте fa наибольшей требуемой частоте в полосе пропускания, а его скорость нарастания (В/мкс) должна в 0,5ωа∙10–6 раз превосходить максимальный размах выходного напряжения.

·        Инвертирующий коэффициент усиления . Следовательно, коэффициент усиления можно настроить, изменяя сопротивление R1. Для получения требуемой добротности Q изменяют сопротивление R2, и, изменяя одновременно сопротивления R2 и R3 в одинаковом процентном отношении, можно, не влияя на добротность Q, установить центральную частоту.

·        Эту схему можно использовать только для фильтровых звеньев с коэффициентом усиления K и добротностью Q не более 10.


 
© 2012 Рефераты, скачать рефераты, рефераты бесплатно.